787 research outputs found

    Approximate Decentralized Bayesian Inference

    Get PDF
    This paper presents an approximate method for performing Bayesian inference in models with conditional independence over a decentralized network of learning agents. The method first employs variational inference on each individual learning agent to generate a local approximate posterior, the agents transmit their local posteriors to other agents in the network, and finally each agent combines its set of received local posteriors. The key insight in this work is that, for many Bayesian models, approximate inference schemes destroy symmetry and dependencies in the model that are crucial to the correct application of Bayes' rule when combining the local posteriors. The proposed method addresses this issue by including an additional optimization step in the combination procedure that accounts for these broken dependencies. Experiments on synthetic and real data demonstrate that the decentralized method provides advantages in computational performance and predictive test likelihood over previous batch and distributed methods.Comment: This paper was presented at UAI 2014. Please use the following BibTeX citation: @inproceedings{Campbell14_UAI, Author = {Trevor Campbell and Jonathan P. How}, Title = {Approximate Decentralized Bayesian Inference}, Booktitle = {Uncertainty in Artificial Intelligence (UAI)}, Year = {2014}

    Practical bounds on the error of Bayesian posterior approximations: A nonasymptotic approach

    Full text link
    Bayesian inference typically requires the computation of an approximation to the posterior distribution. An important requirement for an approximate Bayesian inference algorithm is to output high-accuracy posterior mean and uncertainty estimates. Classical Monte Carlo methods, particularly Markov Chain Monte Carlo, remain the gold standard for approximate Bayesian inference because they have a robust finite-sample theory and reliable convergence diagnostics. However, alternative methods, which are more scalable or apply to problems where Markov Chain Monte Carlo cannot be used, lack the same finite-data approximation theory and tools for evaluating their accuracy. In this work, we develop a flexible new approach to bounding the error of mean and uncertainty estimates of scalable inference algorithms. Our strategy is to control the estimation errors in terms of Wasserstein distance, then bound the Wasserstein distance via a generalized notion of Fisher distance. Unlike computing the Wasserstein distance, which requires access to the normalized posterior distribution, the Fisher distance is tractable to compute because it requires access only to the gradient of the log posterior density. We demonstrate the usefulness of our Fisher distance approach by deriving bounds on the Wasserstein error of the Laplace approximation and Hilbert coresets. We anticipate that our approach will be applicable to many other approximate inference methods such as the integrated Laplace approximation, variational inference, and approximate Bayesian computationComment: 22 pages, 2 figure

    Truncated Random Measures

    Full text link
    Completely random measures (CRMs) and their normalizations are a rich source of Bayesian nonparametric priors. Examples include the beta, gamma, and Dirichlet processes. In this paper we detail two major classes of sequential CRM representations---series representations and superposition representations---within which we organize both novel and existing sequential representations that can be used for simulation and posterior inference. These two classes and their constituent representations subsume existing ones that have previously been developed in an ad hoc manner for specific processes. Since a complete infinite-dimensional CRM cannot be used explicitly for computation, sequential representations are often truncated for tractability. We provide truncation error analyses for each type of sequential representation, as well as their normalized versions, thereby generalizing and improving upon existing truncation error bounds in the literature. We analyze the computational complexity of the sequential representations, which in conjunction with our error bounds allows us to directly compare representations and discuss their relative efficiency. We include numerous applications of our theoretical results to commonly-used (normalized) CRMs, demonstrating that our results enable a straightforward representation and analysis of CRMs that has not previously been available in a Bayesian nonparametric context.Comment: To appear in Bernoulli; 58 pages, 3 figure

    The computational asymptotics of Gaussian variational inference

    Full text link
    Variational inference is a popular alternative to Markov chain Monte Carlo methods that constructs a Bayesian posterior approximation by minimizing a discrepancy to the true posterior within a pre-specified family. This converts Bayesian inference into an optimization problem, enabling the use of simple and scalable stochastic optimization algorithms. However, a key limitation of variational inference is that the optimal approximation is typically not tractable to compute; even in simple settings the problem is nonconvex. Thus, recently developed statistical guarantees -- which all involve the (data) asymptotic properties of the optimal variational distribution -- are not reliably obtained in practice. In this work, we provide two major contributions: a theoretical analysis of the asymptotic convexity properties of variational inference in the popular setting with a Gaussian family; and consistent stochastic variational inference (CSVI), an algorithm that exploits these properties to find the optimal approximation in the asymptotic regime. CSVI consists of a tractable initialization procedure that finds the local basin of the optimal solution, and a scaled gradient descent algorithm that stays locally confined to that basin. Experiments on nonconvex synthetic and real-data examples show that compared with standard stochastic gradient descent, CSVI improves the likelihood of obtaining the globally optimal posterior approximation
    • …
    corecore